A multi-classifier combination strategy for the recognition of handwritten cursive words

نویسندگان

  • Brigitte Plessis
  • Anne Sicsu
  • Laurent Heutte
  • Eric Menu
  • Eric Lecolinet
  • Olivier Debon
  • Jean-Vincent Moreau
چکیده

The paper describes a recognition scheme for reading handwritten cursive words using three word recognition techniques. It particularly focuses on the implementation used to combine the three techniques based on a comparative sru& of different strategies. The first holistic recognition technique derives a global encoding of the word. The other techniques both rely on the segmentatiorr of the word into letters, bur diger in the character ClassiJier they use. The former runs a statistical linear classifier, and the latter runs a neural network with a different representation of the input data. The testing, comparison, and combination studies have been perfornied on word images from mail provided by the USPS. The top choice recognition rates achieved so far correspond to 88 %, 76 %, 6.5 % with respect to lexicon sizes of 10, 100, and IO00 words.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of multiple classifiers for handwritten word recognition

Because of large shape variations in human handwriting, recognition accuracy of cursive handwritten word is hardly satisfying using a single classifier. In this paper we introduce a framework to combine results of multiple classifiers and present an intuitive run-time weighted opinion pool (RWOP) combination approach for recognizing cursive handwritten words with a large size vocabulary. The in...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

An Analytic Scheme for Online Handwritten Bangla Cursive Word Recognition

In this article, we describe a prototype system for recognition of online handwritten cursive words of Bangla, a script used by more than 200 million people of India and Bangladesh, two neighboring countries of Asia. To the best of our knowledge, in the literature, there does not exist any work on recognition of such online Bangla cursive words. Here, we propose an analytic recognition approach...

متن کامل

یک روش دو مرحلهای برای بازشناسی کلمات دستنوشته فارسی به کمک بلوکبندی تطبیقی گرادیان تصویر

This paper presented a two step method for offline handwritten Farsi word recognition. In first step, in order to improve the recognition accuracy and speed, an algorithm proposed for initial eliminating lexicon entries unlikely to match the input image. For lexicon reduction, the words of lexicon are clustered using ISOCLUS and Hierarchal clustering algorithm. Clustering is based on the featur...

متن کامل

Segmentation-free MRF Recognition Method in Combination with P2DBMN-MQDF for Online Handwritten Cursive Word

This paper describes an online handwritten English cursive word recognition method using a segmentation-free Markov random field (MRF) model in combination with an offline recognition method which uses pseudo 2D bi-moment normalization (P2DBMN) and modified quadratic discriminant function (MQDF). It extracts feature points along the pen-tip trace from pen-down to pen-up and uses the feature poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993